Part Number Hot Search : 
S21MD3TV ONDUC NCV8614B KBU806 IW0140A4 P100A BYD57VA D1A2400
Product Description
Full Text Search
 

To Download SKW15N120 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SKW15N120
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode
* 40lower Eoff compared to previous generation * Short circuit withstand time - 10 s * Designed for: - Motor controls - Inverter - SMPS * NPT-Technology offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability
C
G
E
P-TO-247-3-1 (TO-247AC)
* Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKW15N120 Maximum Ratings Parameter Collector-emitter voltage DC collector current TC = 25C TC = 100C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE 1200V, Tj 150C Diode forward current TC = 25C TC = 100C Diode pulsed current, tp limited by Tjmax Gate-emitter voltage Short circuit withstand time Power dissipation TC = 25C Operating junction and storage temperature Soldering temperature, 1.6mm (0.063 in.) from case for 10s Tj , Tstg -55...+150 260 C
1)
VCE 1200V
IC 15A
Eoff 1.5mJ
Tj 150C
Package TO-247AC
Ordering Code Q67040-S4281
Symbol VCE IC
Value 1200 30 15
Unit V A
ICpul s IF
52 52
32 15 IFpul s VGE tSC Ptot 50 20 10 198 V s W
VGE = 15V, 100V VCC 1200V, Tj 150C
1)
Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Jul-02
Power Semiconductors
SKW15N120
Thermal Resistance Parameter Characteristic IGBT thermal resistance, junction - case Diode thermal resistance, junction - case Thermal resistance, junction - ambient Electrical Characteristic, at Tj = 25 C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0V , I C = 10 0 0 A VCE(sat) V G E = 15 V , I C = 15 A T j =2 5 C T j =1 5 0 C Diode forward voltage VF V G E = 0V , I F = 1 5 A T j =2 5 C T j =1 5 0 C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C = 60 0 A , V C E = V G E V C E =1200V,V G E =0V T j =2 5 C T j =1 5 0 C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current
1)
Symbol
Conditions
Max. Value
Unit
RthJC RthJCD RthJA TO-247AC
0.63 1.5 40
K/W
Symbol
Conditions
Value min. 1200 typ. max. -
Unit
V
2.5 -
3.1 3.7 2.0
3.6 4.3 2.5 5 A 200 800 100 1500 185 80 175 nC nH A nA S pF
3 -
1.75 4 11
IGES gfs Ciss Coss Crss QGate LE IC(SC)
V C E =0V,V G E =20V V C E = 20 V , I C = 15 A V C E = 25 V , V G E = 0V , f= 1 MH z V C C = 96 0 V, I C =1 5 A V G E = 15 V TO-247AC V G E = 15 V ,t S C 10 s 10 0 V V C C 12 0 0 V, T j 15 0 C
-
1250 155 65 130 13 145
1)
Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Jul-02
Power Semiconductors
SKW15N120
Switching Characteristic, Inductive Load, at Tj=25 C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t F Qrr Irrm d i r r /d t T j =2 5 C , V R = 8 00 V , I F = 1 5 A, d i F / d t =6 5 0 A/ s 0.5 15 500 C A A/s 65 ns td(on) tr td(off) tf Eon Eoff Ets T j =2 5 C , V C C = 80 0 V, I C = 1 5 A, V G E = 15 V /0 V , R G = 33 , L =1 8 0n H, 1) C = 4 0p F Energy losses include "tail" and diode reverse recovery.
1)
Symbol
Conditions
Value min. typ. 18 23 580 22 1.1 0.8 1.9 max. 24 30 750 29 1.5 1.1 2.6
Unit
ns
mJ
Switching Characteristic, Inductive Load, at Tj=150 C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy td(on) tr td(off) tf Eon Eoff Ets T j =1 5 0 C V C C = 80 0 V, I C = 15 A , V G E = 15 V /0 V , R G = 33 , L =1 8 0n H, 1) C = 4 0p F Energy losses include "tail" and diode reverse recovery. T j =1 5 0 C V R = 8 00 V , I F = 1 5 A, d i F / d t =6 5 0 A/ s
1)
Symbol
Conditions
Value min. typ. 38 30 652 31 1.9 1.5 3.4 max. 46 36 780 37 2.3 2.0 4.3
Unit
ns
mJ
Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t F
1)
-
200
ns
Qrr Irrm d i r r /d t
2.0 23 140
C A A/s
Leakage inductance L and stray capacity C due to dynamic test circuit in figure E.
Power Semiconductors
3
Jul-02
SKW15N120
70A
Ic
60A 50A 40A 30A 20A 10A 0A 10Hz TC=110C
100A tp=2s 15s
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
10A
50s
TC=80C
200s
1A
1ms
Ic
DC 0.1A
100Hz
1kHz
10kHz
100kHz
1V
10V
100V
1000V
f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj 150C, D = 0.5, VCE = 800V, VGE = +15V/0V, RG = 33)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25C, Tj 150C)
35A 200W 30A 175W 150W 125W 100W 75W 50W 25W 0W 25C 25A 20A 15A 10A 5A 0A 25C
IC, COLLECTOR CURRENT
Ptot, POWER DISSIPATION
50C
75C
100C
125C
50C
75C
100C
125C
TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj 150C)
TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE 15V, Tj 150C)
Power Semiconductors
4
Jul-02
SKW15N120
50A 50A
40A
40A
IC, COLLECTOR CURRENT
15V 30A 13V 11V 20A 9V 7V 10A
IC, COLLECTOR CURRENT
V G E =17V
V G E =17V 15V 30A 13V 11V 20A 9V 7V 10A
0A 0V
1V
2V
3V
4V
5V
6V
7V
0A 0V
1V
2V
3V
4V
5V
6V
7V
VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25C)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150C)
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
50A
6V
40A
5V
IC=30A
IC, COLLECTOR CURRENT
4V IC=15A 3V IC=7.5A 2V
30A TJ=+150C 20A TJ=+25C TJ=-40C 10A
1V
0A 3V
5V
7V
9V
11V
0V -50C
0C
50C
100C
150C
VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 20V)
Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V)
Power Semiconductors
5
Jul-02
SKW15N120
1000ns td(off)
1000ns
td(off)
t, SWITCHING TIMES
t, SWITCHING TIMES
100ns
100ns td(on) tf
tf
td(on)
tr 10ns 0A 10A 20A 30A 40A 10ns 0
tr
25
50
IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150C, VCE = 8600V, VGE = +15V/0V, RG = 3 3, dynamic test circuit in Fig.E )
RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, IC = 15A, dynamic test circuit in Fig.E )
1000ns
6V
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
td(off)
5V max.
t, SWITCHING TIMES
4V
typ. 3V min. 2V
100ns
td(on) tr tf 10ns -50C
1V
0C
50C
100C
150C
0V -50C
0C
50C
100C
150C
Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 15A, RG = 3 3 , dynamic test circuit in Fig.E )
Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.3mA)
Power Semiconductors
6
Jul-02
SKW15N120
14mJ
*) Eon and Ets include losses due to diode recovery.
5mJ
*) Eon and Ets include losses due to diode recovery.
12mJ
E, SWITCHING ENERGY LOSSES
10mJ 8mJ Eon* 6mJ 4mJ 2mJ 0mJ 0A
E, SWITCHING ENERGY LOSSES
Ets*
Ets* 4mJ
3mJ Eon* 2mJ Eoff
Eoff
1mJ
10A
20A
30A
40A
50A
0mJ 0
25
50
75
IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, RG = 3 3 , dynamic test circuit in Fig.E )
RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150C, VCE = 800V, VGE = +15V/0V, IC = 15A, dynamic test circuit in Fig.E )
4mJ
*) Eon and Ets include losses due to diode recovery.
Ets*
D=0.5
ZthJC, TRANSIENT THERMAL IMPEDANCE
E, SWITCHING ENERGY LOSSES
3mJ
0.2 10 K/W
-1
0.1 0.05 0.02
2mJ
Eon*
10 K/W 0.01
-2
Eoff 1mJ
R,(K/W) 0.09751 0.29508 0.13241 0.10485
R1
, (s) 0.67774 0.11191 0.00656 0.00069
R2
10 K/W 1s
-3
single pulse 10s 100s
0mJ -50C
C 1 = 1 / R 1 C 2 = 2 /R 2
0C
50C
100C
150C
1ms
10ms 100ms
1s
Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 800V, VGE = +15V/0V, IC = 15A, RG = 3 3 , dynamic test circuit in Fig.E )
tp, PULSE WIDTH Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T)
Power Semiconductors
7
Jul-02
SKW15N120
20V Ciss 1nF
VGE, GATE-EMITTER VOLTAGE
15V
UCE=960V 10V
C, CAPACITANCE
5V 100pF
Coss
Crss 0V 0nC 50nC 100nC 150nC 0V 10V 20V 30V
QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 15A)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz)
30s
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
11V 12V 13V 14V 15V
300A
tsc, SHORT CIRCUIT WITHSTAND TIME
250A
20s
200A
150A
10s
100A
50A
0s 10V
0A 10V
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 1200V, start at Tj = 25C)
VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (100V VCE 1200V, TC = 25C, Tj 150C)
Power Semiconductors
8
Jul-02
SKW15N120
400ns 350ns 2.5C
trr, REVERSE RECOVERY TIME
300ns 250ns 200ns 150ns 100ns 50ns 0ns 200A/s
Qrr, REVERSE RECOVERY CHARGE
2.0C
IF=15A
1.5C
IF=15A
IF=7.5A
1.0C
IF=7.5A
0.5C
400A/s
600A/s
800A/s
1000A/s
0.0C 200A/s
400A/s
600A/s
800A/s
1000A/s
d i F / d t, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 800V, Tj = 150C, dynamic test circuit in Fig.E )
d i F / d t, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 800V, Tj = 150C, dynamic test circuit in Fig.E )
30A
400A/s
d i r r /d t, DIODE PEAK RATE OF FALL
25A
20A
OF REVERSE RECOVERY CURRENT
Irr, REVERSE RECOVERY CURRENT
IF=15A
300A/s
IF=7.5A
200A/s
15A
IF=7.5A
10A
IF=15A
100A/s
5A
0A 200A/s
400A/s
600A/s
800A/s
1000A/s
0A/s 200A/s
400A/s
600A/s
800A/s
1000A/s
d i F / d t, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 800V, Tj = 150C, dynamic test circuit in Fig.E )
diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 800V, Tj = 150C, dynamic test circuit in Fig.E )
Power Semiconductors
9
Jul-02
SKW15N120
50A 3.0V IF=30A
40A
2.5V
VF, FORWARD VOLTAGE
IF, FORWARD CURRENT
TJ=150C
30A
2.0V
IF=15A
1.5V
IF=7.5A
20A
TJ=25C
1.0V
10A 0.5V
0A 0V
1V
2V
3V
4V
0.0V 0C
40C
80C
120C
VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage
Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature
ZthJCD, TRANSIENT THERMAL IMPEDANCE
10 K/W D=0.5
0
0.2 0.1 10 K/W
-1
0.05
0. 0 01 .0 2
R,(K/W) 0.09709 0.50859 0.36316 0.53106
R1
, (s)= 0.40049 0.09815 0.00612 0.00045
R2
single pulse 10 K/W 10s
-2
C 1 = 1 / R 1 C 2 = 2 /R 2
100s
1ms
10ms
100ms
1s
tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T)
Power Semiconductors
10
Jul-02
SKW15N120
TO-247AC
symbol
dimensions
[mm] min max 5.28 2.51 2.29 1.32 2.06 3.18 min
[inch] max 0.2079 0.0988 0.0902 0.0520 0.0811 0.1252
A B C D E F G H K L M N
P
4.78 2.29 1.78 1.09 1.73 2.67
0.1882 0.0902 0.0701 0.0429 0.0681 0.1051
0.76 max 20.80 15.65 5.21 19.81 3.560 21.16 16.15 5.72 20.68 4.930
0.0299 max 0.8189 0.6161 0.2051 0.7799 0.1402 0.8331 0.6358 0.2252 0.8142 0.1941
3.61 6.12 6.22
0.1421 0.2409 0.2449
Q
Power Semiconductors
11
Jul-02
SKW15N120
i,v diF /dt tr r =tS +tF Qr r =QS +QF tr r IF tS QS tF 10% Ir r m t VR
Ir r m
QF
dir r /dt 90% Ir r m
Figure C. Definition of diodes switching characteristics
1
Tj (t) p(t)
2
r2
r1
n
rn
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent circuit
Figure B. Definition of switching losses
Figure E. Dynamic test circuit Leakage inductance L =180nH, and stray capacity C =40pF.
Power Semiconductors
12
Jul-02
SKW15N120
Published by Infineon Technologies AG i Gr., Bereich Kommunikation St.-Martin-Strasse 53, D-81541 Munchen (c) Infineon Technologies AG 1999 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Power Semiconductors
13
Jul-02


▲Up To Search▲   

 
Price & Availability of SKW15N120

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X